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FINITE ELEMENT CALCULATIONS OF VISCOELASTIC FLUID FLOW IN A SPINNING AND

NUTATING CYLINDER
1. INTRODUCTION

In recent years there has been considerable interest in understanding

the onset of instability in liquid-filled shells that are simultaneously

-spinning and nutating in flight. Field observations by D'Amico and Mil-

ler (1979) indicate that there is an instability which appears in fluids

of very high viscosity, and is therefore unrelated to the instability

associated with the presence of inertial waves in fluids of very low

viscosity (Stewartson 1959, Wedemeyer 1966). Theoretical work by Vaughn

et al (1985) and Herbert (1985), coupled with the experiments of Miller

(1982) performed under controlled conditions, confirm the presence of

this high-viscosity instability, which manifests itself through a rela-

tively large despin moment (leading to a loss in spin rate). It is gen-

erally thought that the despin moment attains a maximum at a fairly high

viscosity value (low Reynolds number) and then decreases as the visco-

sity decreases.

e
Hitherto all work on this problem, both experimental and theoretical,

has been restricted to Newtonian liquids. There are, however, practical

reasons that make it important to consider the behavior and response of

the spinning-nutating system when the liquid fill is non-Newtonian, and

the present project is directed at comprehending and resolving the

issues that arise in that case.

The primary purpose of this project was to determine the liquid-induced

despin moment fur the configuration shown in Figure 1. A right circular t

cylinder of length 2c and diameter 2a spins about its axis with angular

speed w. The axis of the cylinder is inclined to the vertical at the

A
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nutation angle 8 and rotates about the vertical with angular speed 0.

The cylinder is completely filled with a liquid of constant density p;

this liquid is non-Newtonian, and the implications of this will be dis-

cussed in Section 2 below, but the liquid is taken to have a zero-shear-

rate viscosity p0. The two axes of rotation intersect at the point 0 on

the center line of the cylinder.

This report is organized in the following way. In Section 2 we discuss

properties of non-Newtonian fluids that could be relevant to the present

study, and describe a number of possible theoretical models that can be

used. The general equations that govern the motion of the liquid, and

the associated boundary conditions, are developed in Section 3, where

appropriate nondimensionalizations are also jihLtoduced. Thrn in Section

4 we derive the expressions for the liquid-induced moments acting on the

cvl.inder, and infer a general relationship between two of the components

of the moment.

IN: The work performed in this project has proceeded along two distinct but

related paths. On the one hand we have developed an analytical treatment

of the problem in the case of a cylinder of infinite length, following

the procedure of Herbert (1985) for the Newtonian liquid case. The infi-

nite length model has validity when the aspect ratio of the cylinder is

large, which is frequently the case in flight and laboratory tests, and

can predict the flow field except close to the cylinder ends. A reason-

able estimate of the dospin moment can also he obtaincA The procedure

o and results are outlined in Sections 5 and 6 respectively. The method of

analysis utilizes the fact that the nutation angle 0 is generally quite
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small (181 s 20°), and that the ratio of angular velocities (0/u>) is

also quite small. These facts enable the solution of the problem to be

found by analytic perturbation techniques, as was done by Herbert (1985)

for the Newtonian liquid case. In performing this analysis we were able

to assess the contribution to the despin moment arising from the

liquid's viscoelasticity, and to show how this contribution, from a

theoretical point of view, depends on the constitutive model used to

represent the non-Newtonian behavior.

Iii parallel with the perturbation analysis we have performed a numerical

simulation of the flow in the cylinder shown in Figure 1, and have com-

puted the moments. The computations were done using a task-oriented ver-

sion of the finite-element code FIDAP; this code and the methodology of

the simulations are described in Section 7. The properties of the non-

Newtonian fluids to be simulated were deduced from data supplied by

CRDC, as were the parameter ranges of 4nterest. The results of the

computations are presented in Section 8.

The results obtained are reviewed and discussed in Section 9.

'4'
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2. NON-NEWTONIAN LIQUIDS

In attempting to model the flows of non-Newtonian liquids the funda-

mental difficulty always is the form of the relationship between the

stress tensor and the deformation-rate (strain-rate) tensor, the so-

called constitutive relation. No constitutive relation has been found,

either empirically or from theory, that can claim to be appropriate for

all flows of all non-Newtonian liquids. In fact, it is generally agreed

that there is no such general constitutive relation or, if there is, it

is so complex that it cannot be used for the solution of problems and

cannot be determined empirically.

For modeling purposes, therefore, it follows that one is confronted with

the more restricted task of determining a constitutive relation that

applies to a limited class of flows and/or a limited class of fluids If

one asks whether it is possible to find a constitutive relation that

describes all possible flows of one given non-Newtonian liquid, the

answer, based on experience, is again negative. It turns out, on the

other hand, that there are much better prospects of finding a constitu-

tive relation to describe a limited class of flows for a reasonably wide

range of fluids.

The consequence of this fact is that in studying a particular flow it is

of primary importance to choose a constitutive relation that is appro-

priate to that flow. One aspect of this approach, howeve.-, needs to be

carefully monitored. As will be seen below, constitutive relations

always contain parameters that measure the viscoelastic properties of a

liquid. These parameters have to be determinied empirically, but the

'a:,0 .ý.A AN *O



determination has to be from experiments on the same class of flows for

which the model is being constructed, since otherwise they may not be

relevant to the particular constitutive relation being applied.

For example, it is well known that many polymer solutions exhibit shear

thinning in plane, unidirectional shear flows; for such flows, and when

no other fluid behavior is of interest, it is often sufficient to model

shear thinning by introducing a shear-rate dependent viscosity function

A - A(') (2.1)

where I is the magnitude of the rate of shear. From equation (2.1) one

deduces a constitutive law

L- p<y)• (2.2)

which is an explicit relation between the stress tensor r and the rate

of strain tensor j. Various functional forms of equation (2.1) have been

proposed, mostly involving algebraic dependence on -; a common form is

%. the Carreau model

S- - (1 + (Aj) 2  
, (2.3)

P0 - A

where p,0 is zero-shear-rate viscosity, p. is infinite-shear-ra:e viscos-

ity, X is a time constant arid a a power-law index.

While the constitutive relation implied by equation (2.2) can of n be

fitted quite well to experimental data on shear thinning in sin'L"t

shearing flows, it is incapable of predicting uther common viscoelasti2

effects, in particular normal stress diffetence and fLuid elasticity.

'.
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For these and others it is usually necessary to go to a more sophisti-

cated model. Thus, for example, the constitutive relation known as th,

second-order fluid model, typically written in the form

o+. - al1,.j , (2.4)

" where •, • are the appropriate tensors, al, o 2 and all are constants, and

D represents a convected or Jaumann derivative, predicts no shear thinn-

in& but does predict a normal stress difference and a complex viscosity

in relaxation. Again, it should be emphasized, models such as (2.4) can

bn made to fit experimental observations only in a limited class of

* simple flow configurations. An. improved version of equation (2.4) is the

CEF model (Criminale et al, 1958) in which the constants a,, a2, C11 are

roplacod by (empirically determined) functions of shear rate.

A class of more widely acceptable models are the differential relations

of the form

r + Dr - 2_ 0(i + (2.5)

*'. whir'- contain a relaxation time constant X, a zero-shear rate viscosity

j•0 and a retardation time constant 0.. The derivative D includes a para-

meter that chang-s the character of the model; the details will be dir-

cussed further below, This model (2.5) is knovn co be anplicable over a

wider class of flows than any of the others mei --_eviously, but It:

is also known to be limited, and even unsatis ". , ,rn applied to

very complicated flows.
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In the present project we are dealing with a fully three-dimensional

flow of a viscoelastic liquid. For three-dimensional flows there is vir-

tually no information available, either experimental or theoretical, to

determine whether one or any of the known constitutive rela'tions; is ade-

quate to describe and predict the flow dynamics. This is because it is

not known whether shear thinning, normal stress differences, elongation-

al viscosity, stress relaxation, or some combination of all or some of

these, plays the dominant role in any given three-dimensional flow. On

this account a major thrust of ti-is project has been the testing and

categorizing of constitutive relations, with a view to eventual calibra-

tion against experiments, to ascertain what are the most important char-

acteristics affecting the flow ii a spinning and nutating cylinder. The

object of this analysis was to arrive at a sufficiently accurate predic-

tive constitutive relation that can be used for large-scale simulation.

In Sections 5 and 6 of this work we describe the results of testing

models such as those mentioned explicitly above, and draw some relevant

conclusions.

The two principal (but by no means -niy) measures of the degree of "non-

Newtonianness" of a liquid are the zero-shear-rate viscosity P. and a

time constant, denoted A. The addition of certain polymers to a Newto-

nian liquid has the effect of increasing the viscosity, sometimes by

orders of magnitude, so that M0 refers to the viscosity of the new, non-

Newtonian liquid and is by no means the same as that of the solvent. For

the case of liquid-filled shells at high (Newtonian) viscosity, this

means that the new polymer solution must be regarded as having an even

higher viscosity.
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The time constant A is a measure of the degree of shear thinning under

deformation, as well as of normal stress and stress relaxation depending

on the type of flow under consideration. To estimate how important any

or all of these effects are in any given situation, one should compare

the magnitude of A (which has the dimensions of time) with some other

typical time constant of the flow. In the present work an obvious candi-

date for the latter is the period of the spin, in which case we can de-

fine a dimensionless parameter We, called the Weissenberg number, by the

formula

We - w. (2.6)

Elastic effects become important when the elastic time constant is large

compared with the dynamic time constant; this may well be the case in

the present situation since the angular velocity of spin is quite large

(4000-6000 r.p.m.).

For estimating the dynamical behavior of the liquid the appropriate

dimensionless parameter is the Reynolds number

Re w- (2.7)

Combining equations (2.6) and (2.7) we can define an alternative elastic

paramet, r, called the Deborah number, by the formula

De -We/Re- -- (2.8)
azp
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which has the virtue that it is independent of spin rate, and represents

the ratio of the elastic time constant to a typical diffusion time

constant.

The parameters Re, We. De will play an important role in the subsequent

discussion.

1

A * .
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3. FORMULATION

As pointed out by Vaughn et al (1985) and Herbert (1985), it is conven-

ient to write the governing equations in a nutating frame of reference,

the so-called aeroballistic frame. In this coordinate system, the z-axis

coincides with the axis of the cylinder, the x-axis lies in the plane

containing the angular velocity vectors w and 0, and the y-axis is per-

pendicular to this plane. This constitutes a right-handed cartesian sys-

tem, with the origin taken at the center of the cylinder.

It is also convenient to use dimensionless forms of the governing equa-

tions. Nondimensionalization is achieved by scaling lengths with respect

to the radius a, time with respect to the spin time constant w-1 , linear

velocities with respect to the speed aw, the angular velocity vector

with respect to its magnitude 0, the stress and deformation rate tonsors

with respect to p0w and w respectively, and the pressure with respect to

paZw2 . It is then easy to show that the governing equations for momentum

and mass conservation with respect to the aeroballistic frame are

1

-v + v'Vv 4- 297[i×+v + t720 x(9 Oxr) " -Vp + - V .'r (3.1)
-tRe -

V.v - 0 . (3.2)

The parameters appearing here are the Reynolds number, as defined by

formula (2.7), and the spin ratio q

- /(3.3)



The dimensionless angular velocity vector 0 with respect to the carte-

sian aeroballistic frame is

--i + 1lIo2 k (3.4)

where
o - sin 9 (3.5)

is the third crucial parameter of the problem. The boundary conditions

are that the normal velocity component is zero at every rigid boundary

and that the tangential velocity at a boundary is equal to the rigid-

body velocity of that boundary. On physical grounds we require also that

the velocity is bounded on the cylinder axis.

To complete the specification of the problem it is necessary to stipu-

late the constitutive relation between stress and strain rate. We shall

consider a number of typical, representative relations all of which, it

can be shown, are invariant with respect to the transformation from the

inertial frame to the aeroballistic frame.

The dimensionless form of the constitutive relation corresponding to the

power-law Carreau model (2.3) is

•_- [e + (i-c)(1 +We2
4)] , (3.6) 2

where We is defined by equation (2.6), c j p0 /tu0 and is often taken to

be zero, and a is the power-law index. The strain-rate tensor in (3.6)

is defined by
S(Vy + Vy') (3.7)

and j is its magnitude.
rM

?9
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The dimensionless form of the second-order fluid relation (2.4) is

S- 2(- We D2 + 22.2) , (3.8)

where We is the Weissenberg number again and x is a constant. The deriv..

ative D appearing in (3.8) is defined for a second-order tensor p by the

formula,

Dp - t + v.Vp + w-p - p.W - a(j.p + p.i) (3.9)

where w is the vorticity tensorS(V _ V
2(Vv - VvT ) (3.10)

and a is a constant that can take values between -1 and +1. The choices

a - -1,0,+1 reduce equation (3.9) to the lower convected, corotational

and upper convected derivative respectively. It should be noted that

(3.8) predicts no shear thinning in simple shear flow, but does predict

constant first and second normal stress differences. The Weissenberg

number that appears in (3.8), consequently, is a measure of the first

normal stress difference and therefore may need to be interpreted dif-

ferently from the corresponding parameter in (3.6), where it is a mea-

sure of shear thinning. The parameter x in (3.8) is associated with the

second normal stress difference.

A generalization of (3.8) is the Criminale-Ericksen-Filbey model, namely

r - 2(•'(i)j - We$2(i)Dj + 2K$(i)x-) (3.11)

where D, 21' 43 are generally npiricaily determined functions of 4.
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In particular, a suitably chosen form of 1 can describe shear thinning

effects, while the dependence of 0 and 0 on i can describe the varia-

tion of first and second normal stress differences with shear rate.

A rather general differential model which we propose to study is

r +4 We Dr 2 i( + eWe Di) (3.12)

where the operator D is defined by (3.9). This model predicts- shear

thinning when -1 < a < 1 and a shear-rate dependent first normal stress

difference. It is a modified version of the Oldroyd (1958) 8-constant

model. The Weissenberg number in this model is a measure of both shear

thinning and normal stress, while e - P./j0' as in (3.6).

It is convenient to introduce cylindrical polar coordinates (r,O,z),

defined by
x - rcoso, y - rsir., z - z (3.13)

In that case the boundary conditions can be written simply as

v - on r-

v-r4o on z -±b (3.14)

y bounded as r 0

"where b- c/a is the aspect ratio, while the angular velocity vector

"V (3.4) takes the form

Q - -ocos r + asino + C2 (3.15)

This completes the formulation of the problem.
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4. MOMENTS

In this Section we discuss some issues concerning the moment acting on

the cylinder shown in Figure 1, and derive an important relationship

between two components of the moment vector. In the latter part of the

Section we show what modifications are required when the problem of the

infinitely long cylinder is being considered.

The total moment acting on the cylinder is denoted M. Typical units

are gm-cm -sec-2 , and in conformity with the scalings introduced in Sec-

tion 3 we define the dimensionless total moment MT by the formula

K* - a5W2 (4.1)

where p is fluid density, a is cylinder radius and w is the spin rate.

An expression for the moment can be written down in terms of pressure

and stress fields, namely

1

UT r x(-Vp + -L v)dV (4.2)
"TVRe -

or, equivalently,

f (a-p]r x dS + I r X r dS) (4.3)
S Re -

where V denoted the volume of liquid and S the bounding surface. With

the aid of (3.1) it is also possible to w-ýte the moment in the form

U7  J- f f-• r x v),IV + f (1s x v) (.dS) + 2 7J1• x(f x v)dV
t' tV S V (4.4)

+ 17 
2 J_ x(O x r)dV

V
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with respect to the aeroballistic coordinate system. This formula

expresses the fact that the moment is equal to the rate of change of

angular momentum.

The fourth term on the right-hand side of (4.4) represents the moment

due to solid-body motion and is Independent of the velocity field. It is

therefore convenient to remove this term and to introduce the quantity

f, representing the (dimensionless) moment induced by the liquid pay-

load, defined by

f-- j(1rxv) dV + f(1rxxv)Q(ytdLS + 2lrjx (Qlx v) dV (4.5)
V S v

The dimensional equivalent of this is given by

M* - paW M , (4.6)

The solution being sought is time-independent with respect to the

aeroballistic reference frame; this implies that the first term on the

right-hand side of (4.5) is identically zero. Moreover, the boundary

conditions (3.14) imply that v2 dS - 0 on the entire bounding surface. It

follows, therefore, that the effective form of (4.5) is ,
p

I ",
1 - 217flx(O x v)dV (4.7)

V J

which is, of course, the contribution from the coriolis force.

We refer the moment to a cartesian coordinate system in the aeroball-

istic frame; this is the system described at the beginning of Section 3.

The components of r are (x,y,z), while the components of M are denoted

*_ -a ,tt t4dt V J.Ay ns_.;N '3 r ,f 4t'St .w 'A.S& t.f-~!JA3*tpt f4y $ ~t*.~t ~t -&-t
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Mx, My, M t In this terminology M= represents the despin (roll) moment,

Hx the yaw (side) moment and M1 the pitch moment. For the velocity vec-
x Y

tor v it is convenient to write

x-(-y + u)i + (x + v)j + wk , (4.8)

so that (u,v,w) are the components of the deviation from rigid-body

rotation. It should be noted that the boundary conditions (3.14) imply

the vanishing of u, v and w on all solid boundaries. The components of

the angular velocity vector J1 are given by (3.4).

Substituting all the various components into (4.7) we obtain

S- -2r4(yvsinO + zwsine + zucose)dV
V

,N M -, tlrb + 2nf(xvsine - zvcos#)dV (4.9)•%Y V

M= - 21f(xwsin6 + xucosO + yvcos$)dV
v

where 9 is the coning angle and b - c/a is the aspect ratio. It is note-

worthy that the rigid-body motion of the liquid contributes only to the

pitch moment M .
y

We now establish an exact relationship between the components MX and M.

To do this it is convenient to write the first and third of equations

(4.9) in the forms

Mx - -2t7(sinO II + sin9 12 + coso 13)
(4.10)

Mz - 297(sinO Ki + cosO K2 + cos9 K3 )
d2

-0 4 - 6.4'--v _'N r,-A
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where the definitions of the I's and K's are self-evident. Consider

first

I, - ,fyvdV - ffyvdxdydz - 1ffvd(y 2 )dxdz
V

Integrating by parts and using the fact that v - 0 on the boundaries, we

have

I, f-•. v - + aw dV
* V ay 2 V aX az

.1e,

by continuity. Now de can write

I - f dxdyd, + y fJfj fj dzdydx

and the interior integrals both vanish since u - 0 and v - 0 on the

boundaries. Hence 11 - 0.

By exactly simi_.1ar procedures we can show that I1, K2 and K 3 also van-

ish. Thus w" have the result

I 1 2 - K - K3 - 0 (4.11)

This implies that equations (4.10) reduce to

M1 - -2v7coso 13 , M - 2qsinO KI . (4.12)

Next consider

13 f- u dV - Ud . v-u -V
13~JZ d -ffz fudxdydz f ax
V V

on integrating by parts and using the condition u - 0 on the boundaries.
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By continuity

- Jjxz v dydxdz + f dzdxddy0., ay + fx fz aw

0 - fxw dV - -K1

21
on integrating by parts. Hence we have

13 + K1 - 0 (4.13)

Applying this result to (4.12) we obtain

s -nO M cos8M -o 0 (4.14)

This is the relationship between M and M. referred to earlier. It

should be noted that (4.14) applies to both Newtonian and non-Newtonian

fluids, and that its derivation does not depend on any assumptions

regarding the parameters of the problem.

Seveial modifications need to be made to the foregoing discussion when

the problem of an infinitely long cylinder is under consideration. In

the first place it is no longer possible to refer to the moment on the

whole cylinder, since the volume integrals in (4.2) and subsequent equa-

tions would be infinite. We can, however, calculate the moment acting on

a cylindrical control volume V, with bounding surface S, which encloses

a cylinder of fluid of radius a and lenth 2c. In this case the formulas

(4.2)-(4.5) become meaningful when V and S are interpreted in this way.

p-
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The mass of liquid inside the control volume is

mL- 27ra2cp (4.15)

so that we can conveniently define a liquid-payload-induced moment per

unit mass by the formula

m -*/M ; (4.16)

this has units cm .fec". A dimensionless moment per unit mass, denoted

m, can be obtained from this by writing

m* - a2 z02 m (4.17)

and it is then easy to show that m and H are related by the formula

m - M_/(2wb) (4.18)

The quantities m" and M are meaningful for both a finite cylinder and an

infinite cylinder, and therefore can be used when results for the two

problems are being compared.

The second modification is necessitated by the fact that the flat ends

of the control volume are not rigid boundaries, and therefore it is no

'P longer the case that v.dS - 0 on all boundaries. It follows that the

effective form of (4.5) is no longer (4.7), but rather

M 1 (rx v)(y.dS) + 2r7fjrx(9 x v)dt.' (4.19)
S V

where the first term on the right-hand side of this equation may have

contributions from the flat ends. Precisely what these contributions are

.3

.1
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will beeokne apparenc in the next Section where the calcalations for the.

PS infinitely 13ng cylinder axe pre'ented.

Finally, we do not exptc't the rnlationship (4.14) to hold in the infin-

- its cy14.Tndor cncw. tot only are the moments affected by the additional

term I.' (..l9- tut al-o the idcntities (4.11) and (4.13) cannot be

Qstablishd, Thi%. >f. because th3 proofa of these depend on the fact that

tho cumpcnts •,, are all zero on all boundaries; but this is no

ln-or true on t.ho flat ends of the control volume. Conseqi..-ntly the

proofs break down and the results do not apply. In the next Section wv

shall discuss the relationship between M. and M. as it emerge!, fromn our

solution.

-S

4-'

'S
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5. INFINITELY LONG CYLINDER

In this Section and the next we shall be considering the special, and

obviously unrealistic, case of an infinitely long cylinder. This problem

was analyzed in considerable detail. by Herbert (1985) for the Newtonian

liquid; we shall adapt Herbert's procedures to the non-Newtonian liquid,

and shall indicate similarities and dissimilarities as appropriate.

There are two reasons for pursuing the infinite-cylinder problem. The

first is that it is possible to obtain an approximate analytic solution

in the case that the spin ratio (O/w) is small, which does indeed apply

in most situations of practical interest. The second is that the results

obtained should be relevant to the case of a cylinder which is finite

but of large aspect ratio. As indicated in the previous Section,

hewever, and shown further below, some reservations need to be made in

interpreting infinite-cylinder results for the moments when one has the

finite cylinder in mind.

The governing equations are (3.1)-(3.2), together with one of the con-

stitutive relations listed ir ection 3. The boundary conditions (3.14)

are modified, however, for infinite aspect ratio to read

v-• onr-l

(5.1)

v bounded as r 0

It is assumed that the spin ratio " is small, and a solution is devel-

oped through a regular perturbation procedure.

A
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We expand the field quantities appearing in the governing equations in

power series of the following forms,

_ -_v (0) + •XI + ,,Z..,(2) +..

(0) (1 2V(2)+

, - T °0 + ,7L_(1) + 17r2f' ) + ... (5.2)

p- p (0) + 17p(1) + 7;Zp( 2 ) + ...

Associated with these will be similar expansions of the strain-rate and

vorticity tensors,

i(0) + 7 1 722'(2) + (5.3(5.3)

- W (0) + 97ýý() + 07 2 W(2) +

These representations are substituted into the governing equations (3.1)

-(3.2), the boundary conditions (5.1), and the appropriate constitutive

equations, and the terms corresponding to like powers of q are equated.

This results in a sequence of boundary-value problems which are in

principle amenable to analytic solution.

It is easy to show that the leading-order solution, corresponding to

S- 0, is simply the rigid-body motion of the liquid, and this is inde-

pendent of the p-'v:tcular constitutive equation chosen. In fact we have

that
V(0) - rý, TO) m 0' p(0) 1 r2- - - 2 (5.4)

•(0) 0'O •(0) r - r

It should be noted that the strain-rate tensor is zero, while the

vorticity tensor has components appropriate to rigid-body rotation.

-.
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At the next order, corresponding to 0(7), equations (3.1)-(3.2) become

i _) (. (y(.)rý + 201x r) _Vp (, + L V.

Re + Re (5.5)

V.V€' - 0 (5.6)

while the boundary conditions (4.1) become

_v(') - 0 on r-

(5.7)

v(1) bounded as r - 0

The appropriate approximation for each of the constitutive relations

discussed in the preceding Section can easily be written down. From the

Carreau model (3.6) we obtain

-, 2•' (5.8)

I which is the same as for a Newtonian liquid. This is due to the fact

that j appears in the denominator of (3.6) in quadratic form, and there-

fore the nonlinearity makes no contribution at this order,

For the second-order fluid model (3.8) we obtain

.'l - 2*( - 2We{,'' + +1 +•0 - 2 , o (5.9)

which, it should be noted, does not contain either of the parameters a

or K. The form of the CEF equation (3.11) depends on the functions (D,

42' 'ý but if, as is usually the case, these are quadratic in -'y, then

the reduced form of the CEF equation is also (5.9), the same as that: of

the second-order fluid equation.

-a

- *..- ' - 5 p * 4-j.~-5*-. * -- ---. ,5 5~- -- 5 -£ - .
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The differential model (3.12) becomes

.,. '1 I- w e l ~il) + ( .) + .,€,o). ,.m I - ,.M .W (o))

(5.10)

- 2(l)2eWe(j l+ l+~j W C1 WC)~(

It should be observed that the parameter a, which determines the extent

of shear thinning in the model, is absent from (5,10); in this problem

upper conv•cted, lower convected and corotational models all reduce to

the same form in this approximation.

The problem determined by equations (5.5)-(5.6) and one of (5.8). (5.9)

or (5.10) has a time-independent solution with the velocity vector being

of the form
0, 0, w(r,•) ] (5.11)

The flow is purely axial and depends only on the plane coordinates r,O.

With this flow field the strain-rate and stress tensors are respect-

ively,

0 0 W 0 0
r 0 3

0•1 (1) - 0 1 (5.12)- 1 0 W • , 0 0 2J i0Wr r w••13 2Z3

Equations (5.5) and (5.6) now simplify to

p(1) -jl2. (5 3

and the equation,

1 l

w- 2ar coso - RI(r1 1 3 (5.14)

Re r 13) r 23r

• R =•J•" '[•t~q | ' • • • _r'••; F•. •,i ••.• • . o ••-•.• •.% • •.•;••.. • _ R~,R - • @•. "'• •T•-. -• :••-•tIre C*. •'V•- _L -d
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with the boundary conditions

w - 0 on r - 1, w bounded at r - 0 (5.15)

It the case of the (Newtonian) constitutive relation (5.8) we find that

II rn "wr T - w (5.16)

so that (5.14) becomes

W 2or coso - (5.17)

where V2 is the two-dimensional Laplacian operator in the r,o-plane.

This is the equation solved by Herbert (1985).

In the case of the second-order fluid relation (5.9) we find that

T - (w - Ue wi) , 0 3 - 1(w - Wew (5.18)13 (518

which reduces (5.14) to the equation

i1 ( . (5.19)
w•-2ar cosO - K- V -W w (519

In the case of the differential model (5.10) we obtain

*13 + Wet 13,0 " (w + CWe w()r

*23 + We r23,* - 1(w + tEe we)¢

Although these equations can be solved for r 3 and r23' and the solution

substituted into (5.14), we bhall refrain from doing so at this point

since the subsequent development provides an easier way of achieving the

desired result.

- :• - _ ;" g t'••* % 5`5%5%J • ;U,•* -•%•.'4:~ • ' . •.•
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Following Herbert (1985) we solve the problem by writing

w - 2a [f(r)coso + g(r)sino]
(5.21)

- 2a.Real [h(r)ei].

where h - f + ig. Equation (5.17) becomes

r2h" + rh' - (1 - !Rer 2)h - -Rer 3  (5.22)

Equation (5.19) becomes

{~"+ h - iRer 2 1 -RerP
r'h " + rh' - I l+_We h +iWe (5.23)

In the third, differential case we find the solutions of (5.20) to be

13- 2o.Real[ (1-1eWe)h'e_1 )

(5.24)

T23- 2o.Real{ r(l- iWe)he --

whereupon the appropriate equation is found to be

r2h + rh' I - Re(l-We)rz -Re(l-iWe)r3 (5.25)r~h"+ rh - 1 - l •-Qe h 1 -ieWe (.5

The boundary conditions are

h - 0 at r - 1, h bounded at r - 0 (5.26)

We see that equations (5.22), (5.23) and (5.25) all have the same struc-

ture. In fact they can all be written in the single unified form

z2h" + rh' - (1 - ISr 2 )h - -Sr 3  (5.27)

. ....,
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where

S - Re (Newtonian and power-law models) (5.28)

Re
S - l+iWe (second-order fluid model) (5.29)

S - (l-iWe)Re (differential model) (5.30)
1-ieWe

It is noteworthy that for the second-order-fluid and differential models

the parameter S has the form of a complex Reynolds number. Thus in these

two cases it seems that the non-Newtonian effects are in a sense repre-

sentable by a complex viscosity; this occurs in other flow configura-

tions of viscoelastic fluids, for example in time-dependent flows where

stress relaxation is important.

The solution of (5.27) which satisfies the boundary conditions (5.26) is

J(X II(qr)
h . _ r (5.31)

where
q2  -iS (5.32)

and 1 is the modified Bessel function of order unity. The flow field

can be completely determined by a simple computation of the Bessel func-

tions.

Before proceeding to discuss the moment acting on the cylinder, we note

that approximate forms of (5.31) for small and large I5l are easily

found.
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When ISI << I we apply standard formulas for series expansions of the

Bessel functions to obtain

S riS3 +h - ý(r - r3) + 11(2r - 3r 3 + r5) + 0(S 3) (5.33)'

In the case of a Newtonian or power-law fluid we have that S-Re, so that

ISI << I corresponds simply to a small Reynolds number approximation.

The separation of (5.33) into its real and imaginary parts (h - f + ig)

gives

Re Re2 , 5

f - Le-(r - r3) g- (2r - 3r3 + r5) (5.34)

to a leading approximation, in agreement with Herbert (1985).

For the second-order fluid (5.29) the condition ISI << 1 is achieved

when Re << 1. It can also be achieved for very large We, but this is an

anomalous case since the second-order fluid model is known to be invalid

at large Weissenberg number. The real and imaginary parts of (5.33) are

found to be

e (rR- r 3 ) + Re'We (2r- 3r3 + r5)
8(l+We2 ) 96(l+Wez)z

(5.35)

-ReWe (r - r 3) + Re2(l-We2) (2r - 3r + r')
8(l+We 2 ) 192(1+We )2

this is significantly different from (5.34) in that the component g now

has a term proportional to Re, whereas there is no such term in equation

(5.34).

ýP.:411ýý';'aulA A JLb"ýA . .-.
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For the differential model (5.30) the condition ISI << 1 is again

achieved when Re << 1. Provided e - 0 the condition Re << 1 implies that

ISI << 1 for the whole range of values of We. When e - 0, however, it is

clearly necessary to impose the additional requirement WeRe << I to en-

sure that ISI << 1. In this case (5.33) gives

f - Re(l+eWe2 3) + Re2We(l-c)(l+cWe (2 r - 3r 3 + r 5 )
8(l+e2We2) 96 (l+e 2We2 ) 2  

(5.36)

g -(l-e)ReWe - r 3) + Re2 [(1+eWe 2 ) 2
_(1-c) 2We2 ] (2r - 3r 3 + r 5 )

8(l+e 22) 192(l+c2 We2 ) 2

Again there is a term proportional to the Reynolds number in the compo-

nent g.

In all three cases (5.28)-(5.30) the limit I15 -1 is equivalent to

Re - -, irrespective of Weissenberg number. The effects of elasticity

disappear in this limit and all the cases are effectively Newtonian.

Asymptotic results in the limit Re - c have been provided by Herbert

-'(1985).

We proceed now to calculate the moment in the present configuration. We

take a control volume V with bounding surface S which coincides with a

cylinder of liquid of dimensionless length 2b and dimensionless radius

1, and whose center coincides with the origin of the coordinate system.

As shown in Section 4, equation (4.19), the liquid-induce6 ,in:rsnt acting

on this control volume has the form

L. - MS + _M (5.37)
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where

M,- f(:xx)(y-dS) , - 27f;rx(Qxv)dV (5.38)
S V

As indicated previously, the contribution M. arises entirely from the

fact that the boundaries at the flat ends of the control volume are not

rigid.

We shall compute Ms and M-v separately for the case of small spin ratio.

First, we write

MS - M()+ + + 172 + (5.39)

Then, substituting (5.2) and (5.39), and equating coefficients of like

powers of n, we obtain

ýo f (K x v(0))(O) - dS) (5.40)

S

- f (r x v(°))(vMl).dS) + f(r x v(1))(y(°).dS) (5.41)
S S

f f(1: x v"°))(y(2 ) dS) + f (1r x (y•)v -ds)
S s

(5.42)

+ f (r x v(2) )(°)-dS)
S

for the first three terms in the series for M.

Now v(0) is given by (5.4), and it is obvious that v(°)-dS vanishes

everywhere on S. Hence (5.40) gives

L() - 0 (5. 43)S

-s VA
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Next consider (5.41). For the reason just stated the second integral on

the right-hand side of (5.41) is identically zero, while the first inte-

gral reduces to an integral over the two flat ends, with (5.11) giving

v'ý1 )dS - + wrdrd4 on z - ± b respectively. We then obtain

M(1) - -2bffr 2w drd4 (5.44)

the integration being over 0 < r < 1, 0 < 4 < 2w. We express the moment

in terms of its cartesian components by using the transformations

r- cos4 i + sino J , 4 - -sino i + cos4 j (5.45)

and the representation (5.21) for w. Then we obtain from (5.44) non-zero

x and y components,

M(') - -4rabfr2f(r)dr (5.46)
IX 0

M(') - -41rabfr2g(r)dr (5.47)
0

and the z-component is found to be identically zero.

It is easy to show, finally, that

M(z) _ 0 (5.48)

for the following reasons. Although v(2) has not been calculated explic-

itly, it can be demonstrated with little difficulty that vy' has no

component in the z-direction. Hence v2).dS = 0 on the surface, and so

the first in-egral on the right-hand side of (5.42) vanishes. The thirn

'• .',"~ ~ ~~~~~~~~~~~~~~~~ ." .•-" ... '• '' .. .-'' . "' ... .' ..- ' • '' . '' .'' ..'' . ' ' '' '- ' ' - - . '- '- -.-. .. ". -.-
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integral vanishes because v")4dS - 0 on the surface. The second inte-

gral can be shown to vaitish because of symmetry considerations.

Summarizing these results we have that

US - ' -41acbfraf(r)dr i - 4wabfr'g(r)dr J (5.49)
1 0 0

I We now turn to the contribution L, which arises from the coriolis

force. Writing
- ýo) +- , + .-4 ..1 (5.50)

and substituting into (5.38), we obtain

_0) - 0 (5.51)

1) - 2frx( x v(°))dV (5.52)
V

I •2) - 2fr x(O x xv"))dV (5.53)
V

Using (3.15) and (5.4) we easily show that

_ - baj (5.54)

and using (3.15), (5.11) and (5.21) we find

_2_ 8,Tbcfr'f(r)dr A (5.55)
0

Thus we have that

A - *

7rb= t cba j + ?7
2.8Sbacjr2f(r)dr k + 0(,7') (5.56)

0
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Combining (5.49) and (5.56) we obtain

-7 41cb rrf (r) d i + 7 •ba - 4rbaf r2g(r)d- - o. d (5.57)
1 0

+ 172.8rb2 fr2f(r)drk + 0("3)
0

This can be written in an alternative, more convenient, form. By inte-

grating equation (5.27) and using the boundary conditions (5.26) we find

that I 1 h'(1) i
Js2h(r)dr - '( + (5.58)
o 4

We take the real and imaginary parts of this expression and substitute

into (5.57), which then becomes

M - , 7.- 4nab ReelT (, i + 9.--4nbo Imag -J (5.59)

+ I?2.8xbo Real ih----!Ž) k + O(q3)

If the components of M are denoted by fl,Mn, we see from (5.59) that

M4 - -217cM. (5.60)

which agrees with the result obtained by Herbert (1985) for the

Newtonian fluid.

It is important to note that the despin moment M., which derives from

the moment of the coriolis force _MV, can give a reasonable approximation

to the corresponding quantity for a cylinder of finite length (.7ith

large aspect ratio). The other two components M.1,M1 given by (5.59' are

aid"-
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entirely spurious as f&r as the finite-cylinder situation is concerned,

since they both contain contributions from surface integrals over the

flat ends. Similarly the relation (5.60), which differs from (4.14), is

also spurious.

From (5.59), therefore, we note for future reference that the despin

moment is given by the expression

M - 1?z.8rba2G Real±h' (1)) (5.61)

to leading order.

In the next Section we give numerical results based on the calculations

presented above.

-%

J,~
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6. INFINITELY LONG CYLINDER: RESULTS

The purpose of the calculations reported in this Section was to demon-

strate how the inclusion of non-Newtonian effects modified the flow

field and the despin moment as computed by Herbert (1985). We were

interested primarily in sensitivity to departure from Newtonian behavior

rather than determining even an approximation to the solution that was

applicable to the case of a closed cylinder of finite length. The most

that can be expected of the present calculation would be some qualita-

tive insight into the consequences of including viscoelasticity in the

model.

The results herein are based on equation (5.31), which gives the compo-

nents f and g of the axial velocity in complex form, and on equation

(5.61), which gives the despin moment at leading order. The computation

of the Bessel functions involved is straight-forward, and we have used a

combination of the series and asymptotic formulas for these functions to

cover the required parameter range.

We note first that, according to equation (5.28), the power-law model

predicts the same velocity field and despin moment as does the Newtonian

model. It should be emphasized that this prediction is entirely a conse-

quence of the linearizing expansions (5.2) and (5.3), and would fail to

hold when these expansions break down. This question will be discussed

in more detail subsequently.

For the differential model, with "complex viscosity" S given by formula

(5.30), we show in Figures 2 and 3 respectively the variation of f and g

I--
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with radius at a Reynolds number Re - 15. Included in these Figures are

the appropriate Newtonian curves (We - 0) which are identical with those

presented by Herbert (1985). The three non-Newtonian cases shown in

these Figures correspond to various values of Deborah number De and

retardation parameter e, namely, De - 0.1, e - 0.1; De - 0.2, e - 0.1;

De - 0.2, e - 0.2, respectively. It is clear that the velocity fields

P are considerably distorted by comparison with the Newtonian case, par-

ticularly for the component f which, from (5.21), corresponds to the

flow in the plane 0 - 0. There is here a backflow near the cylinder cen-

ter and the appearance of a boundary layer near the wall.

Figures 4 and 5 show the variation of the same quantities, f and g, with
0

radius for the same parameter vialues, but at Reynolds number Re - 50.

Again the distortions in the velocity fields for the viscoelastic cases

are self-evident. In a very broad sense the non-Newtonian velocity

fields at Re - 15 are comparable with the Newtonian velocity fields at

Re - 50, which is consistent with the shear-thinning nature of the

viscoelastic model.

The despin moment as a function of Reynolds number for this model is

shown in Figure 6. The quantity actually plotted in this diagram is, for

convenience, denoted M and defined by

N2  (1h' (l)1
S 2. 8nb2 -Real - (6.1)

from equation (5.61). It is therefore possible to compute the despin

moment on a contrcl volume of dimensionless length 2b as well as the de-

spin moment per unit length. The important features observed from Figure
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6 are, firstly, at low Reynolds numbers the despin moment is larger in

the viscoelastic cases than in the Newtonian case; secondly, at large

Reynolds numbers the effect of viscoelasticity is to reduce the despin

moment by comparison with the Newtonian case; and thirdly, the maximum

despin moment occurs at a lower Reynolds number (Re • 5-10) for the vis-

coelastic liquids than for the Newtonian liq-iid (Re 15). These suggest

that there can be quite significant non-Newtonian effects in the precise

low Reynolds number regime where the high viscosity instability is of

practical concern.

It is interesting to compare these results with their equivalents for

the second-order fluid, for which S is given by (5.29). In Figures 7-10

we show the variation of f and g with radius at Reynolds numbers Re - 15

(Figures 7 and 8) and Re - 50 (Figures 9 and 10). In addition to the

Newtonian curves (included for purposes of comparison) we show the

curves for values of Deborah number De - 0.01 and De - 0.1. It is clear

that the distortions due to non-Newtonian effects are very different

from those in the differential model. Figure 11 shows the quantity M,

defined by (6.1), as a function of Reynolds number for the same para-

meter values De - 0.01 and De - 0.1. Again the differences between the

differential model and the second-order fluid model are striking. In the

latter case, as shown in Figure 11, although the moment increases due to

non-h~wtonian effects, the Reynolds number at which it attains its peak

is greater then in the Newtonian case.

These results highlight the importance of a proper representation of

non-Newtonian behavior through the choice of a constitutive model des-
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cribing the fluid motion of interest. In part the differences between

the moments shown in Figures 6 and 11 can be understood from the follow-

ing argument. The value of the moment is effectively determined by the

quantity S and how the Bessel functions vary with S. For the second-

order fluid, from (5.29),

151 Re < Re (6.2)
11 + lWel

while for the differential model (5.30)

I1 - 1wel

NIs - Re ll - Wel > Re (6.3)

for any value of the Weissenberg number. Thus if we tentatively take the

view that ISI is an effective Reynolds number, we see that the Reynolds

number is reduced (viscosity is increased: shear thickening) for the

second-order fluid, while the Reynolds number is increased (viscosity is

decreased: shear thinning) for the differential model. The general

shapes of the curves in Figures 6 and 11 are consistent with these

notions.

' of
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7. FINITE ELEMENT METHOD

The problem as posed in Section 3 was solved numerically by a finite

element method, using the software package FIDAP (Fluid Dynamics Analy-

sis Package). FIDAP is a commercial, general purpose code for the solu-

tion of incompressible fluid flow problems governed by the Navier-Stokes

equations, and including non-isothermal effects. The code applies to

both transient and steady flows, and can handle three-dimensional prob-

lems. It has the capability of addressing flows of non-Newtonian fluids,

In the present work the problem was posed in the aeroballistic reference

frame discussed previously. In this frame the problem is three-

dimensional and a steady state solution is required. No thermal effects

are considered.

The essential features of the finite element method as incorporated in

FIDAP are as follows. The domain of interest, the interior of the cylin-

der, is divided into a number of geometrically simple elements, thereby

generating the finite element mesh Since the code FIDAP works in carte-

sian coordinate systems, the elements are straight-sided even though a

portion of the cylinder boundary is curved. The number of elements used

is a crucial factor in determining the running time of the program, and

this consideration has to be balanced against accuracy requirements. The

finer the mesh, the greater the accuracy and, simultaneously, the cost;

and conversely, coarsening the mesh decreases both accuracy and cost.

The principal criterion in deciding on the mesh is that the associated

approximations should be sufficient to resolve the flow field every-

where. Thiz means, for example, that the mesh needs to bh qutite fine In
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regions where boundary layers occur so that large gradients of the velo-

city field can be appropriately taken into account. Thus, flows at low

Reynolds numbers can generally be handled with a fairly coarse mesh,

while high Reynolds number flows require a much finer mesh.

In the present project, after considerable experimentation, a mesh was

designed that was adequate for low and moderate Reynolds numbers, over

the range 0 < Re < 2500 approximately. At the lower end of the Reynolds

number range a coarser mesh would no doubt have sufficed, but it was

decided to retain the rather fine mesh throughout the computations in

the interests of obtaining better accuracy. It should be pointed out

that the Reynolds number referred to here is the zero-shear-rate

Reynolds number; in the non-Newtonian situation the actual Reynolds num-

ber is considerably higher due to shear thinning.

The working mesh had 2240 elements, which were 8-node bricks, and 2541

nodes. The mesh is shown in Figure 12.

In the finite element method the velocity vector is approximated on eech

element by a simple polynomial fun,:tion. In the present casc the veloci-

ties were approximated by trilinear interpolation functions, dhile the

pressure was represented by a piecewise constant discontinuous function.

The Galerain miethod of weighted residuals reduces the Navier-Stokes and

continuity equations, together with the boundary conditions, to a large

system of nonlinear algebraic equations which then need to be solved by

an appropriate technique. The solution procedure used here was a quasi-

Newton method, which is an iterative method of Newton type involving up-

dating of the iteration matrix.



-41.

The procedure adopted in solving the problem with FIDAP can be summar-

ized as follows:

1. An input file was prepared which included,

(a) the specification of the mesh;

(b) the specification of the boundary conditions, namely that

the container is in rigid body rotation in the aeroballistic

frame, by a call to a subroutine that contains the boundary

conditions information;

(c) the specification of the solution procedure, chosen from

among several options available in FIDAP;

(d) the specification of the non-Newtonian properties of the

liquid; this will be described in more detail in the next

Section.

2. The program FIDAP was run on a Hewlett Packard 9000 computer. it

was found that only 3-4 iterations of the quasi-Newton method were

required to achieve convergence, and the typical run time on this

machine was about 12 hours of cpu time. The first run was at a low

Reynolds number, and subsequent runs at higher Reynolds numbers

were performed by restarting from the solution obtained in the

previous run.

3. The output was sent to a post-processor file from which graphical

information concerning the flow field could be extracted.
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4. A subroutine was used to compute the three components of the

moment in accordance with the formula (4.9).

In the next Section we detail the results of the calculations.
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S. COMPUTATIONS

To begin with, in order to test the code and the viability of the mesh,

we performed a sequence of computations for a Newtonian liquid over a

range of Reynolds numbers. The aspect ratio of the cylinder in this case

was b - 4.368, the coning angle was 8 - 200, and the spin ratio was q -

1/6. These quantities were held fixed and the Reynolds number was varied

over the range Re - 10 to Re - 1000. Figure 13 shows the variation of

the roll moment Hz with Reynolds number over this range. It should be

noted that the quantity M. plotted here and in all subsequent graphs is

the dimensionless roll moment as defined by equation (4.9). In accord-

ance with formula (4.6) the conversion to dimensional form is effected

by the transformation

H: - a 2I2M (8.1)

It can be seen from Figure 13 that the maximum roll moment occurs at a

Reynolds number approximately equal to 40. This is larger than the value

predicted by Herbert (1985) but the latter, of course, applied to the

case of an infinite cylinder. The general shape of the curve, however,

is consistent with that obtained from the infinite cylinder approxiina-

tion as shown, for example, in Figure 6.

The detailed values of the three components of the moment are shown in

Table 1. The Reynolds numbers listed in the first column are those actu-

ally used in stepping the solutions by restarting from the solution of

the previous run. The quantities M., H. are the dimensionless values

defined by equation (4.9), while the quantity My is the pitching momi-tt

due to deviation from solid body rotation, namely
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1- M -Y norb (8.2)

• In column 5 of Table 1 we have written the ratio H ./H.. According to the

calculation presented in Section 4 this ratio should exactly equal

tan 0 - .3640 when 0 - 200. The closeness of the number in column 5 to

this value is one good indication of the accuracy of the computation.

Typical flow fields from this computation are shown in Figures 14-18.

Figures 14(a),(b),(c) show the velocity vector in the transverse plane

defined by z - 4.0 for values of the Reynolds number Re - 20, 300, 1000

respectively, while Figures 15(a),(b),(c) show the equivalent velocity

vectors at the same respective Reynolds numbers in the plane z - -4.0.

These two planes, it should be recalled, are quite close to the cylinder

enad. Figures 16(a),(b),(c) illustrate the contours of constant axial

vr ý 3,:ity in the plane z - 4.0. The legends in the Figures show the reg-

ions of upflow and downflow. An especially interesting feature of these

diagrams is the development of the boundary layers at the wall of the

cylinder; the boundary layers are already in evidence when Re - 300 and

are quite strong when Re - 1000. Figures 17(a),(b),(c) show the -elocity

vector in the -xial cross-section of the cylinder lying in the plane

formed by the vectors w and Q, that is, the plane 4 -0, while Figures

18(a),(b),(c) depict the same velocity field in the orthogonal axial

plane, namely 4k - n1 2 . These Figures clearly show the formation of two

regions of strong vortex-like motion as the Reynolds number increases.

Next we performed the calculations for two non-Newtonian liquids of

interest to CRDC. The properties of these liquids were presented in the
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form of experimental data in which the variation of viscosity with shear

rate had been measured. Some data on the vartation of normal stress with

shear rate was also available, but only for a very limited range of

shear rates. A constitutive relation, for example of differential type,

was not known for either of these liquids, nor was it possible to con-

struct one on the basis of the available data. The measurements, more-

over, were understood to have been performed in simple shearing experi-

ments, in which the nature of the flow was very different from that in

the spinning and nutating cylinder.

In the absence of appropriate data for the liquids under the flow condi-

tions prevailing in the present problem, it was decided to simulate the

non-Newtonian effects by entering a shear-rate-dependent viscosity func-

tion extrapolated from the data provided. This data is shown in Table 2.

One of the liquids, henceforth referred to as Liquid 1, waz a relatively

low viscosity liquid, with a zero-shear-rate value of about 8 poise,

while the other, Liquid 2, was a high viscosity liquid with p04 1300

poise.

The calculations were performed for a cylinder of aspect ratio b - 4.50

and for various values of q, P and Re. This aspect ratio applied to a

test fixture having radius 5.54 cm and length 49.84 cm. Before present-

ing the results of the computations, we note that the Reynolds number

for Liquid I corresponding to the given zero-shear-rate viscosity and a

spin rate of 4000 rpm is approximately Re - 1700, and increases to

Re - 2500 for spin rate of 6000 rpm. For Liquid i, therefore, the calcu-

lations are close to the limits of the chosen mesh. For Liquid 2, the
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corresponding (Newtonian) Reynolds numbers range from Re 10 for

S- 4000 r.p.m. to Re = 15 for w - 6000 r.p.m.

Figures 19 and 20 relate to Liquid 1. Figure 19 shows the variation of

dimensionless roll moment M with Reynolds number in the case 0 - 400

rpm, -4000 rpm, 8 - 20°. The solid curve in this Figure depicts the

behavior for the given non-Newtonian Liquid 1, while the broken curve

represents the behavior of the "equivalent" Newtonian liquid, that is,

the Newtonian liquid having viscosity equal to the zero-shear-rate

viscosity of Liquid i. Figure 20 shows a repeat of these calculations

for w - 4900 rpm, other quantities remaining the same. We see that at

these relatively high Reynolds numbers the non-Newtonian liquid exper-

iences a smaller despin moment than its Newtonian counterpart. This

result is consistent with the predictions of the analytic approximation

for a viscoelastic fluid as shown in Figure 6.

Figures 21 and 22 present the same type of information for Liquid 2.

Figure 21 shows the variation of H with Re for 0 - 400 rpm, w - 4000

rpm, 9 - 200, while Figure 2 relates to the spin frequency w - 4800 rpm.

In both Figures we see that the maximum despin moment for the non-

Newtonian liquid (solid curves) is attained at very low Reynolds num-

bers, much lower than for the Newtonian case. Although the peak v'alues

are not as great as in Figure 6, the general picture is consistent with

that result.

Figure 23 also relates to Liquid 2 and shows the variation of M 7 with

spin rate for some different values of coning angle and coning rate. The

curve labelled 1 relates to the case Ql = 500 rpm, 0 = 20°, the curve
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labelled 2 relates to the case Q - 300 rpm, 0 - 200; and the curve lab-

elled 3 relates to the case 0 - 500 rpm, 8 - 100. The following facts

are apparent from a study of these Figures: the roll moment decreases

with increasing w with the other quantities held fixed; at fixed W and

fixed 8 an increase in coning rULe from 300 rpm to 500 rpm results in an

increase in MH; at fixed w and fixed 0 an increase in 0 from 100 to 200

results in an increase in M

1 c the purposes of detailed analysis, the data shown in Figuze 23 is

presented for all three components of the moment in Tables 3-5.
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9. DISCUSSION
4
4

In reviewing the work performed in this project we note several salient
4

features that merit further discussion.

The first issue is the relationship between the results obtained by the
.4

approximation technique of Section 5 and the finite element computations

of Section 7. In discussing this question we leave aside temporarily

whether the fluid is Newtonian or non-Newtonian, since the question

arises equally in both cases.

More specifically the point is, how accurate are the results obtained by

the methods of Section 5 as presented in :ection 6? The procedure used

in Section 5 involves two distinct appriximations (and consequently two

distinct potential sources of error): it is assumed that the cylinder is

infinitely long, and it is assumed that the coning rate/spin rate ratio

is so small as to allow a perturbation in powers of this ratio, n, with

only the leading order terms retained. It should be emphasized that

these two assumptions are completely independent, and a solution could

formally be obtained with only one of these being invoked. The infinite-

length assumptior, as shown in Section 4, directly invalidates any calc-

ulation of the components M and Hl of the moment because of the loss of
S y

rigid end-wall conditions, but leaves the possibility of a sufficiently

accurate: result for the despin moment MZ. The assumption that n is small

on the other hand, introduces an error in the determination of the velo-

cities and p,essure, and hence of all the mnoments. but this error tends

1t0o z(ro as v -? 0.
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The finite element computation gives an accurate solution provided only

that the physical domain is sufficiently well resolved, that is, that

the mesh is fina enough. The mesh used in our calculations was tested

extensively and found to be adequate for the range of Reynolds numbers

under consideration. Therefore we regard our computational results as

highly accurate, especially at lower Reynolds numbers.S
As one indication of the validity of the infinite-cylinder, small n per-

turbation solution, we Thow in Table 6 values for the despin moment

calculated by the two methods. The results refer to a Newtonian liquid,

with b - 4.368, 0 - 20° and • - 1/6. The perturbation results are taken

from Figure 6, converted using the formula (6.1), while the computa-

tional results are those shown in Figure 13. We see from this Table that

the values differ by between 5% and 25%, depending on Reynolds number,

and that the maximum of the despin moment occurs at about Re - 20 in one

case and at about Re - 40 in the other.

The second major issue is that of the appropriate representation of the

P non-Newtonian behavior of a liquid. There are two aspects to this:

selection of a suitable constitutive relation and determination of the

parameters to be inserted in this relation. It is crucial, moreover,

that the relation and the parameters be appropriate for the type of flow

under consideration. In our view, a constitutive relation, with para-

meters, that has been determined and tested fr lifferent type of flow
e%

may well be completely irrelevant for some ot .pe of flow.

This situation poses a major dilemma for the present project. On a gen-

eral level we are unaware of anv constitutive relations that have been

'1&
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verified (as against postulated) for fully three-dimensional flows of

the type under study here. For this reason we were not in a position to

hypothesize a constitutive law that could be subject to experimental

comparison. On a specific level, for the two liquids of direct interest

the information available regarding their non-Newtonian behavior was

obtained from simple-shear experiments, and may or may not be relevant

to the flow in a spinning and coning cylinder.

As a consequence of this we cannot be certain whether the results

obtained in our computations have quantitative validity. On the other

hand we feel that they do predict correct behavior qualitatively; this

is because there is general qualitative agreement between the computa-

tions based on the experimental data and the approximate analysis in

Section 5 based on a number of different theoretical models. The most

important feature that emerges uniformly is that the maximum despin

moment occurs at a significantly lower Reynolds number in a non-

Newtonian fluid than in a Newtonian fluid.

In order to obtain computational results that could be quantitatively

reliable it would be necessary to determine a constitutive law and para-

meters valid for the flow in question. This would not be easy to do with

any degree of certainty. The analysis of Section 5 can be helpful: it

shows that beginning with various different models one arrives for small

enough n at a relation that involves a complex viscosity. The latter is

a quantity that can be measured from stress relaxation or torsional

rheogoniometer experiments. At the same time it must be said that a com-

plex viscosity law, which is a linear law, may be insufficient. The non-
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linear law of shear thinning used in the computations led to significant

effects, which would not have been the case if the response of the

liquid were primarily linear-elastic. This may be attributed to the fol-

lowing fact. A typical dilute polymer solution has a relaxation time of

about 0.05 - 0.1 sec. For a large spin rate of 4000-6000 rpm, the

Weissenberg number as defined by equation (2.6) will lie in the range

20-bO, which is very large in terms of standard viscoelastic models. In

fact, the perturbation procedure of Section 5 breaks down at such large

Weissenberg numbers. These observations suggest an appropriate empirical

law should incorporate both the elastic effects giving rise to complex

viscosity and nonlinear effects due to the large Weissenberg number.

In summary therefore, we believe that the finite element method as

implemented in the code FIDAP provides accurate solutions to the problem

of non-Newtonian fluid flow in a coning and spinning cylinder; reliable

quantitative results await the empirical determination of a suitable

constitutive law.
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Re mx my MI MN/Mx

10 .05953 .02807 .02202 .3699

20 .07791 .06560 .02860 .3671

30 .08056 .09023 .02946 .3657

40 .07982 .10545 .02918 .3656

60 .07654 .12556 .02805 .3665

80 .07303 .13854 .02681 .3671

100 .06975 .14793 .02562 .3673

120 .06669 .15532 .02450 .3674

150 .06288 .16327 .02311 .3675

175 .05984 .16885 .02200 .3676

200 .05729 .17310 .02108 .3680

300 .04921 .18448 .01817 .3692

400 .04361 .19069 .01619 .3712

500 .03945 .19437 .01472 .3731

A 750 .03244 .19805 .01229 .3789

1000 .02804 .19768 .01080 .3852

Table 1: Moments for a Newtonian liquid in a cylinder of aspect

ratio 4.368, coning angle 20°, coning/spin ratio 1/6

FI1 l
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Liquid I Liquid 2

Shear rate Viscosity Shear rate Viscosity
(sec"') (poise) (sc;-I) (poise)

.855 8.011 .017 1307.349

1.707 7.937 .034 1216.849

3.407 7.488 .067 1125.913

6.798 7.271 .135 1022.781

13.564 6.818 .27 942.722

27.064 5.892 .54 797.31

54. 4.872 1.077 651.202

107.744 4.07 2.149 504.397

214.977 3.152 4.289 371.76

428.937 2.49 8.558 257.124

679.819 2.087 17.076 161.551

Table 2: Experimental data for variauion of viscosity

with shear rate for two liquids

•~ ~~~~~ .. .N ., •" '•. .''' - ''' ' ' ' " ' ' '. " ' '' ' ' " ' ' i ' '
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rpm 17 Re HH

1000 .5 1.7 .66036 .368902 .24118

2000 .25 3.4 .18870 .195367 .068612

3000 .1667 5.1 .081789 .111845 .029732

4L00 .125 6.8 .043971 .071511 .016001

5000 .1 8.5 .027316 .049646 .009950

6000 .0833 10.2 .017866 .0362349 .0065039

7000 .07143 11.9 .012591 .027650 .004585

8000 .0625 13.6 .0092860 .0217832 .0033782

9000 .05556 15.3 .0070814 .0175939 .0025752

10000 .05 17.0 .005546 .014488 .002016

Table 3: LIQUID 2 Coning rate 0 - 500 rpm, Coning angle 0 2C°
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rpm I Re HN Iy M

1000 .3 1.7 .23166 .113717 .083304

2000 .15 3.4 .067447 .071241 .024475

3000 .1 5.1 .028997 .040781 .010542

4000 .075 6.8 .015686 .026023 .005706

5000 .06 8.5 .009542 .017878 .003479

6000 .05 10.2 .0064163 .0131311 .0023306

7000 .04286 11.9 .004534 .0099828 .0016464

8000 .0375 13.6 .0033457 .0078472 .0012149

9000 .033', 15.3 .0025481 .00631841 .00092651

10000 .13 17.0 .002003 .005196 .000728

Table 4: LIQUID 2 - Coning rate 1 - 300 rpm, Coning angle 8 - 20*

I
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Jw

Re M M 14
rpm y

1000 .5 1.7 .34027 .160873 .059135

2000 .25 3.4 .10254 .103172 .017882

3000 .1667 5.1 .043883 .0600640 .0077028

4000 .125 6.8 .023523 .0383475 .0041432

5000 .1 8.5 .014343 .0266239 .0025288

6000 .0833 10.2 .0095728 .0195625 .0016808

7000 .07143 11.9 .0067004 .0149356 .0011818

6000 .0625 13.6 .0049337 .0117658 .000869

9000 .05556 15.3 .0037631 .009499 .000663

10000 .05 17.0 .0029458 .007813 .000519

Table 5: LIQUID 2 - Coning rate 0 - 500 rpm, Coning dngle 0 - 10°

40
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Re finite cylinder infinite cylinder
computation approximate solution

10 .02202 .02656

20 .02860 .03043

30 .02946 .02882

40 .02918 .02690

60 .02805 .02386

80 .02681 .02268

100 .02562 .01998

120 .02450 .01865

150 .02311 .01709

200 .02108 .01520

Table 6; Comparison of despin moments obtained from finite element

computation and infinite-cylinder approximate solution

IJ
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Figure 6: Variation of moment M1 (equation (6.1))
with Re for viscoelastic fluid
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-65-

f

0.6 .

/
0.5- /\

0.4 /2
/\

/ \

0.3 /I /.

0 /
0 1.0

Figure 7: Variation of velocity function f with radius r
for second-order fluid, Re - 15

1. Newtonian
2. De - .01
3. De - .1



-66-

g

0.4-

0.3-

0.2-

0 1r

\ /
\ /
\ /

\ /

-0.2/

Figure 8: Variation of velocity function g with radius r
for second-order fluid, Re - 15

1. Newtonian
2. De - .01
3. De - .1



of1 _ -67-

0.8

/
/\

0.6-/
/\

I\
I 2

S~I

I \I /
0.4-!

I /

0.2 / /

2. De -k .0

I De -

/ \

Figure 9: Variation of velocity function f with radius r
for second-order fluitd, Re - 50

SI. Newtonian

" ~2. De - . 01
3. De -. li



0. -68-

0.6-

0.4-

0.2-

01. 0 r

-0.6 Il/I

-0.8

3. De- .1

1.t NewtonanI



-69-

M

0.2-

Ile%~ 3

0.1 - 2

0 Re
0 20 40 60 so 100

Figure 11: Variation of moment M (equation (6.1))
with Re for second-order fluid

1. Newtonian
2. De - 0.01
3. De-,0 1



-70-

S3COELASTIC FLOW IN A SPINNING NUTATING CYLINDER -' ELEMENT
MESH PLOT

. IN

VX IOOE+Oi
ONINVY .IOOE+Oi

VZ .iOOE+Oi
ANG .OOOE+00

FIDAP
17 Jul 86

x .) . 4: 17: 09

I Figure 12

* I,



-71-

Mz

0.03

0.02

0.01

log Re

1.0 2.0 3.0

Figure 13: Variation of M. with Reynolds number for a Newtonian liquid,

with 6 - 20°, t - 1/6, b - 4.368
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SPINNING & NUTATING CYLINDER :Re u20 Z COMP. VELOC.
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SPINNING & NUTATING CYLINDER : Re , 20 VELOCITY
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SPINNING G NUTATING CYLINDER : Re = 300 VELOCITY
__"_VECTOR PLOT

SCALE FACTOR
.IOOOE+03

I 1h\\, 1 I• MAX. VECTOR
if / .t'llPLOTTED

""""" "ql .109E+00

AT NODE 545

;'11" "- " - l.

11/., ._A .OOOE+O0
B .iOOE÷Oi
C .OOOE00

VX .OOOE+oo
VY .iOOE+Oi
VZ .OOOE+00

t '- / ANG .OOE+OO
F IOAP
rC Jan 86

_ _ _-_--_ _-" 08: 29:0 1

4,'



-83-

SPINNING & NUTATING CYLINDER : Re 1 1000 VELOCITYS.. . .. .. .. .. VECTOR PLOT
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SPINNING & NUTATING CYLINDER R Re = 300 VELOCITY
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SPINNIt' C NUTATING CYLINDER: Re - O000 VELOCITY
VECTOR PLOT
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Figure 19: Variation of despin moment Mz with Reynolds number

for non-Newtonian Liquid 1 (solid curve) and for an

equivalent Newtonian liquid (broken curve) with

- 400 rpm, w - 4000 rpm, 0 - 200
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figuc ~..J. '.ri.atiotL of jesp. moment MI with Reynolds number

fo-_ non-Newtonian Liquid 1 (solid curve) and for an

equivalent Newtonian liquid (broken curve) with

- 400 rpm, w - 4800 rpm, 0 - 20'
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Figure 21: Variation of despin moment Mz with Reynolds number

for non-Newtonian Liquid 2 (solid curve) and for an

equivalent Newtonian liquid (broken curve) with

O - 400 rpm, w - 4000 rpm, 0 - 200
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Figure 22: Variation of despin moment Mz with Reynolds number

for non-Newtonian Liquid 2 (solid curve) and for an

equivalent Newtonian liquid (broken curve) with

S= 400 rpm, w = 4800 rpm, 0 = 20'
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Figure 23: Variation of Mz with spin rate w for Liquid 2

1. 0 = 500 rpm, 9 = 200
2. 0 - 300 rpm, 0 = 20°
3. 0 = 500 rpm, 0 = 10°


